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Abstract

The contributions of frictional slip on the nonlinear, hysteretic deformation of sandstone in the reversible regime (i.e., prior to
the onset of permanent deformation) for uniaxial strain compression are investigated through an analysis of a Hertz—Mindlin
face-centered cubic sphere pack model and laboratory stress—strain tests on Berea sandstone. The analysis demonstrates that the
dynamic' moduli are path-independent functions of the strain. The analysis also reveals that for uniaxial strain consolidation it
is possible to decompose the volumetric strain into a path-independent contribution from nonlinear grain contact deformation
and a path-dependent contribution from frictional (slip) compaction. Laboratory stress—strain measurements on Berea sandstone
support these findings and, in addition, reveal that frictional compaction accounts for a significant portion of the volumetric
strain of Berea sandstone. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Sandstones represent a class of granular materials
that can exhibit complex stress—strain characteristics
such as nonlinearity, hysteresis and stress-induced ani-
sotropy when subjected to compressive stresses, even
for stresses well below the uniaxial compressive
strength where the mechanical behavior is largely re-
versible (i.e., where there is no permanent strain after
the sample is unloaded). These characteristics result
largely from nonlinear deformation and frictional slip
at the grain contacts.

While the contribution of frictional slip to the volu-
metric strain of granular materials such as soils and
sediments is well-recognized in soil mechanics, there
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! Throughout this paper the term dynamic moduli will be used to
denote the small-strain tangent moduli for conditions where there is
no frictional slip between grains. Linear elastic waves are generally
assumed to propagate with wave speeds computed from the dynamic
moduli.

are fewer studies in the field of rock mechanics describ-
ing the role of friction on the deformation of more
competent granular materials such as sandstones (e.g.
[4,11,14,23]). Many investigations of the compressibil-
ity of sandstones are still based on the assumptions
that the rock is isotropic and elastic. In the earth
where deviatoric stresses are the norm, granular rocks
such as sandstones typically exhibit nonlinear, hystere-
tic deformation.

The paper begins with a general overview of the
effects of anisotropy and nonlinearity on the volu-
metric strain of rock which illustrates some of the de-
ficiencies of existing models. This overview is followed
by an analysis of the stress—strain characteristics of a
face-centered cubic (fcc) sphere pack subjected to uni-
axial strain loading. This analysis demonstrates how
the volumetric strain can be decomposed into contri-
butions from intergranular frictional slip and nonlinear
grain contact deformation. This decomposition is then
applied to uniaxial strain stress—strain data for Berea
sandstone to estimate the frictional contribution to the
volumetric strain. The final section summarizes the
basic findings of this study.
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2. Review of linear, nonlinear, and hysteretic
deformation of rock

When a granular rock such as sandstone is subjected
to compressive stresses, the pore volume is reduced by
the deformation of the solid grains and closure of the
compliant portions of the pore space. The total volume
of the rock (Vy) is related to the volume of the grains
(V) and pores (V) through the relation, V=V, + V.
The (bulk) volumetric strain is defined as the change
in volume over the initial volume

. A
b = Vi

(1

The volumetric strain can be expressed in terms of
components of the strain tensor ¢; by decomposing the
strain tensor into its spherical and deviatoric parts,

&j = %8;%5;, + (&5 — %skkéij) = spherical + deviatoric. (2)

The deviatoric strain provides a measure of the change
in shape of the rock, while the spherical part provides
a measure of the change in volume (i.e., the bulk volu-
metric strain),

&b = 38505 + O(6%) = (611 + 2 + &33). )

For an anisotropic linear elastic solid, the volumetric
strain is related to the stresses which produced it
through a contraction on the 7 index of the fourth-
rank elastic compliance tensor s,

&b = SiikiOkl» 4)

or in a condensed notation,

& = 85170, 5)
where 7 =1,2,3and J =1, ..., 6. s;;1s the 3 x 6
compliance tensor of the anisotropic compressibilities,
. Siikls J= 19 2: 3

= {s,-ik,/z, J=4.56 ©)

and o is the 6 x 1 stress tensor a;=[011, 022, 033, 023,
013, 012]". From Eq. (5), it is easy to show that for
general anisotropy the volumetric strain of the rock
results from a combination of normal and shear stres-
ses. However, if the rock is of orthorhombic symmetry
or higher and the symmetry axes aligned with the nor-
mal stress directions, then the volumetric strain will
depend only on the normal stresses. In general, the
volumetric strain of a rock will not solely be a func-
tion of the mean or average stress, even for rocks exhi-
biting linear elastic stress—strain behaviors, unless the
rock is isotropic.

For the special case of isotropy, Eq. (5) takes the
simple form

& = (1/K)5 = S5, 7)

where S is the bulk compressibility of the rock when
subjected to confining stresses, K is the bulk modulus
of the rock, and ¢ = (o1 + 02 + 03)/3 is the mean or
average stress. It should be noted that, to date, much
of the research on the compressibility of rock is based
on the assumption of isotropy for which the compres-
sibility is a scalar quantity (e.g. [27,28]). Eq. (7) can be
modified to describe the bulk strain of a nonlinear
rock by replacing the stress and strain with their differ-
entials and allowing the compressibility to be stress-
dependent [28],

de, = S()da. (®)

Use of this integrated stress—strain relation to capture
the nonlinearity of rock is strictly valid provided the
initially isotropic rock retains its isotropy as it is com-
pressed. Since many rocks exhibit stress-induced aniso-
tropy and hysteresis when subjected to non-hydrostatic
stresses [15-17,22], the integrated form, Eq. (8), should
only be used for isotropic loading (i.e., hydrostatic
stresses).

For non-hydrostatic states of stress, only a limited
number of nonlinear elasticity models which are
capable of predicting stress-induced anisotropy have
been developed. For example, the third-order hypere-
lastic model (based on the assumption that the strain
energy density function is a third-order polynomial)
have been used extensively to model the behavior of
soils (e.g., see [1]) and, recently, rock [9,10,15,18]. The
third-order hyperelastic model for a non-prestressed,
initially isotropic solid is described by five constants.
This model is capable of predicting path-independent
stress-induced anisotropy and shear-dilatancy,

1 _ (3d
&p = [K +95(9ds + d5)i|o* + (25 + d(,>(a]2 + o}
2 2 2 2
+03) + (Bds + 2ds) (o) + 05 + 0¢), 9)

where K is a second-order elastic constant, and ds4, ds,
and dg are the third-order elastic constants. The first
term in Eq. (9) is dependent only on the mean stress.
The second term is a function of the squares of the
normal stresses, resulting in nonlinearity in the bulk
strain versus normal stress relation. The third term is a
nonlinear function of the shear stresses, offering the
possibility of shear-dilation or shear-compaction. The
primary limitation of Eq. (9) when applied to sand-
stones is that its path-independent nature precludes it
from including hysteresis resulting from frictional slip
between grains (e.g., see [16,21]). Hypoelastic models
offer the possibility of including path-dependence by
adopting a formulation in which the stress-rate is a
function of the current strain-state and strain-rate.
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However, these models offer little insight into the phy-
sics producing the path-dependence and can amount
to a curve fitting exercise with up to 21 material
moduli for general triaxial loading [1].

Currently, there are no general analytic models of
granular rock which include both nonlinearity and fric-
tional slip. Closed-form expressions for the stress—
strain behavior of random sphere packs have been de-
rived by Walton [26], Norris and Johnson [21] and
Johnson et al. [16] for the particular cases of smooth
contacts with reversible slip and frictionally-locked
contacts. While these models predict stress-induced
anisotropy, path-dependent stress—strain relationships,
and path-independent second-order elastic moduli (i.e.,
wave speeds), they do not allow for general frictional
behavior where the grains may experience frictional
slip and lock-up during the course of loading, unload-
ing, and reloading of the material. Consequently, these
models do not predict differences between the static
(tangent) and dynamic moduli', a behavior which is
commonly observed in granular media such as sedi-
ments and sandstones (e.g. [13]). Other analytic models
of the frictional deformation of random packings of
grains have been presented (e.g. [2]), but several of
these models have recently been demonstrated to be
based on non-physical contact force laws [8].

-3

123

There are a number of closed-form analytic sol-
utions for the stress—strain behaviors of regular pack-
ings of identical spheres (e.g., simple cubic, face-
centered cubic, hexagonal close packed) that were
developed by Mindlin and others [5-7,25]. These
models have the disadvantage of lacking grain packing
disorder, grain angularity, and intergranular cementa-
tion that are prevalent in most sandstones. However,
because these models do include the contributions of
grain contact nonlinearity and frictional slip to the
volumetric strain, they represent a logical starting
point for the investigation of the effects of friction on
the nonlinear, hysteretic deformation of sandstones.

3. Volumetric strain of an FCC sphere pack for uniaxial
strain loading

To examine the contribution of frictional slip to the
volumetric strain of granular rock, we will use the face-
centered cubic packing (fcc) model of spheres of identical
size and properties. This model is one of the densest regu-
lar arrays of elastic spheres with a porosity of 25.95%
and a coordination number of 12 (Fig. 1). Both the
effects of Hertzian grain contact deformation and Mind-
lin-type intergranular slip [19] are included in the model.
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Fig. 1. Schematic of a face-centered cubic (fcc) packing of identical elastic spheres (porosity =25.95%, coordination number = 12). Nonlinear de-
formation and frictional slip at the grain contacts are described by Hertz—Mindlin contact mechanics for elastic spheres.



124 K.T. Nihei et al. | International Journal of Rock Mechanics and Mining Sciences 37 (2000) 121-132

3.1. Stress—strain relations for uniaxial strain

The differential stress—strain relations for the fcc
packing subjected to axisymmetric loading along the z-
axis are those for a medium with tetragonal symmetry

[71,

doyy ci1 e ez 0 0 0 deyy
dO'yy C12 C11 (13 0 0 0 dgy}
do. _ |3 ¢z ¢33 0 0 0 de.,
doy. | =10 0 0 2 0O 0 de,.-
do.y o o0 0 O 2c4s 0 de.y
doy, 0 0 0 0 0 2c6 || dey
(10)

where ¢j; are the elastic constants. The corresponding
strain—stress relations are

dﬁxx S11 S12 813 0 0 0 dex
dSyy S12 S11 813 0 0 0 dO'yy
d8;z | S13 S13 833 0 0 0 dO';;
dﬁyz 10 0 0 S44 0 0 do yz
de., 0 0 0 0 Saqa 0 do.,
dey 0 0 0 0 0 S66 do Xy
(11

where s;; are the elastic compliances. For one-dimen-
sional consolidation (i.e., uniaxial strain loading) along
the z-axis, all the strains are zero except de... Thus, the
volumetric strain for this state of stress is

dep = de,, = 2513 doyy + $33 do., (12)

where, in general, 513 # 533, indicating that the volu-
metric strain is not solely a function of the mean
stress.

Hendron [12] and Stoll [24] used the results from
Duffy and Mindlin [7] for the fcc packing and Mindlin
and Deresiewicz [20] for determining the tangential com-
pliances of contacting spheres to develop explicit (i.e.,
total) stress—strain equations for uniaxial strain loading.
This particular state of stress has the benefits of the
strain being a scalar (i.e., &,=¢..), and, additionally, it
corresponds to the state of stress produced by elastic
waves in the earth and in laboratory samples with
dimensions that are larger than the seismic wavelength.

The stress—strain relation for the initial loading path
0 — A, as shown in Fig. 2 [12], is

. 2u
load __
o= = [3(1 —v)

}Hn&, (13)

where ¢ and v are the shear modulus and Poisson’s ratio
of the grains, respectively, and fis the intergranular coef-
ficient of fraction. The stress—strain relations for the
unloading path 4 — B, as shown in Fig. 2, are [24]

Gunload _ [ 2/1, i|{(1 _4f )8%2

= 3(1 —v)
+ 211 + Ka)el, — Kager] ), (142)
for [(1 + KZ)SZ - KZSZZ] >0
unload __ 2:“’ :| 1— 3/2
UZZ [3(1 — V) ( f )822 ’ (14b)

for [(1 —+ Kz)S:Z - KZSZZ] < 07

where K>, =—(1+K\f)/2Kf), Ki=Q2—-v)/[2(1-Vv)], and
¢! is the strain at the point of unloading. The stress—

strain relations for the reloading path B — C, as
shown in Fig. 2, are (Appendix)

reload __ H N,3/2
= 1 ;
= [x1_w}“ I
* #%x13/2
+ 2][(1 + Kz){izz — KZEZZ] (1521)
— (1 + K3)etr — Kae=-]2),
for [(1 + Ky)e!, — K2&¥¥]>0
2u
reload — 1 3{2
e e R
(15b)

—2[(1 + K3)e — Kse. ]2,

for [(1 + K»)el, — KrelX] < 0

- - -
N L
T

axial stress, o,, (MPa)
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Fig. 2. Computed o.. vs ¢.. curve for the fcc packing under uniaxial
strain conditions. The grains were assumed to have the properties of
quartz, E = 73.06 GPa (Young’s modulus) and v=0.17 (Poisson’s
ratio), and a friction coefficient f = 0.4. The three segments were
generated using the equations in the text: loading path 0 — A [Eq.
(13)]; unloading path 4 — B [Eq. (14a)]; and reloading path B — C
[Eq. (15a)].
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where K3 =(1—-Kf)/(2 K\f), and & is the strain at the
point of reloading. Note that the reloading equation,
Eq. (15a), degenerates to the loading equation, Eq.
(13), when the points of unloading and reloading are
the same, i.e., when ¢** =¢*.

The stress—strain behavior predicted by these
equations (Fig. 2) have the basic elements that are
observed in laboratory stress—strain measurements on
sandstones: nonlinearity, hysteresis, path-dependent
moduli (i.e., note the presence of the strain history
terms & and & in the stress—strain relations), and
stress-induced anisotropy (for axisymmetric loading,
the initially cubic sample becomes tetragonal).

3.2. Path-independence of the dynamic modulus

Using these equations, the volumetric strain can be
decomposed into separate contributions resulting from
nonlinear grain contact deformation and frictional slip
compaction. First, consider the loading path 0 — 4
(Fig. 2). An expression for the tangent moduli with
friction completely locked-up can be obtained by not-
ing that the grains are frictionally locked-up at the
point of unloading, because the stored elastic strain in
the material is insufficient to cause the grains to back-
slip. This can be seen by differentiating Eq. (14a) and
setting &,, = ¢&*

7z

locked _ dgpiond _ p(4 —3v) e*1/2 (16)
3 dg:z o g (1 - V)(2 - V) =

This expression is the dynamic uniaxial strain modulus
which describes the velocity of ¢ ional waves
travelling along the z-axis ¢, = ,/ci5*d/p, where p is
the density of the packing. An identical expression can
be obtained for the unloading path 4 — B (Fig. 2) by
differentiating Eq. (15a) and setting ¢, = &**

2220

Jocked _ doZod _|p@=3v) g2, (17)
ez |, _.. LA=ME=-w]~

The equivalence of Eqs. (16) and (17) and the depen-
dence on only ¢.. indicate that the dynamic modulus
for uniaxial strain loading is a path-independent func-
tion of the strain (Fig. 3).

Integrating the dynamic modulus, Eq. (16) or (17),
along the loading path gives an expression for the
stress—strain behavior resulting from nonlinearity only
(i.e., without the effects of friction),

. &z 2u(4 — 3v)
nonlin locked de.. = ‘3{2' 18
0., JO C33 &2z 3(1 _ V)(2 _ V) e ( )

The value of the friction coefficient required to prevent
intergranular slip (i.e., frictional lock-up) can be
obtained by equating Eq. (18) with the loading Eq.

(13) and solving for £,

= 2(1-v)

=y (19)

Eq. (19) reveals that the coefficient of friction required
to prevent intergranular slip increases as the Poisson’s
ratio of the grain is reduced (e.g., /*=0.85 for v=0.25;
f=0.89 for v=0.20). This value of the friction coeffi-
cient completely eliminates hysteresis in the stress—
strain relations, resulting in a stress—strain curve with
nonlinearity only. That is, the stress—strain curves for
the loading and unloading paths collapse into one
curve, as shown in Fig. 3, when f=/".

3.3. Decomposition of the volumetric strain

For a prescribed loading path, it is possible to
decompose the volumetric strain into a path-indepen-
dent contribution from nonlinear grain contact defor-
mation and a path-dependent contribution from
intergranular frictional slip compaction,

&y = gl;?nlin + ((:?:ction7 (20)
where from Eq. (18),

. 31-v2 -1
-nonlin _ 2/3. 21
bz [ =3y | = (212)
Note that the volumetric strain &, is path-dependent
because of the path-dependence of &°". For any uni-
axial strain loading or unloading path, the path-inde-

14
— | stress-strain ononlin
& 121 curve with i
S 10k frictional
C ™Mb lock-up
o 8
N
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R I
— 4r
8 ~— "dynamic" moduli are
fé 2+ path-independent
- : functions of the strain
L 1 i L | L L 1 L
00 0.002 0.004 0.006

axial strain, €,

Fig. 3. Uniaxial strain ¢""" vs ¢ curve for the fcc packing (proper-
ties are the same as in Fig. 2) with frictional lock-up (f=/*=0.91)
computed from Eq. (18). The uniaxial strain o., vs ¢.. curve for a
load—unload cycle [computed from Egs. (13), (14a) and (14b)] is
shown for reference. Small unloading and reloading excursions are
also displayed on this curve [computed from Egs. (14a) and (15a), re-
spectively]. The equivalence of the slopes of these excursions indi-
cates that the dynamic uniaxial strain modulus &% is a path-
independent function of the axial strain.
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pendent nonlinear contribution to the volumetric strain
is given by Eq. (21a), and the path-dependent fric-
tional slip contribution is the remainder. For example,
the frictional slip contribution to the volumetric strain
for the loading path can be obtained by subtracting
Eq. (21a) from Eq. (13),

3(1—v) T”
2u(1 41 )(4 —3v)

x {(4 =30 —[2 -1 + 1))

zz

zZZ

Sfriction (1021(1) _ |:
(21b)

An analogous expression for the frictional slip contri-
bution to the volumetric strain along the unloading
path, &€ton(ynload), can also be obtained by (numeri-
cally) inverting the stress—strain relation given in Eq.
(14) and subtracting out the nonlinear contribution
given in Eq. (21a). In general, this expression will not
be the same as Eq. (21b) (ie.,
eliction(Joad )¢ (unload ), unless f=f*) because of
the path-dependence introduced by the intergranular
frictional slip.

The nonlinear and frictional contributions to the
volumetric strain for the loading path predicted by
these relations [Egs. (21a) and (21b)] are shown
graphically in Fig. 4. The contribution of the frictional
slip-assisted compaction &fi°’(Joad) to the volumetric
strain decreases as the friction coefficient is increased.
As f— f*, the grains become frictionally locked-up and
the frictional slip contribution [Eq. (21b)] approaches
zero. At the other extreme, f = 0, the frictional slip
contribution is largest, approaching 54% of the volu-

40
L //f
s | /
S| -
— 30} nonlin
~ 2z
II:II I / g
W . —
Eﬂ 20k =0
= / _
@ | =0.2
T,E 10 friction £=0.4 |
o . 7z
< |/ £=0.6—
/ =0.8 —
—————
% 5 10

axial stress, ¢,, (MPa)

Fig. 4. Decomposition of the volumetric strain of the fcc packing for
uniaxial strain conditions. The nonlinear contribution to the volu-
metric strain ¢""" computed using Eq. (21a) is displayed as a dotted
curve. The frictional slip contribution to the volumetric strain com-
puted for the loading path &ficin(load) using Eq. (21b) for a range
of friction coefficients is shown as solid curves. Note that the fric-
tional slip contribution approaches zero as f— f*=0.91.

metric strain resulting from the nonlinear contribution

Snnnhn

3.4. Ratio of the static to dynamic modulus

An additional result that can be obtained from the
fcc model is the relationship between the static (i.e.,
large-strain tangent) and dynamic moduli. The uniaxial
strain dynamic modulus is described by Eq. (16). The
uniaxial strain static modulus for the loading path can
be obtained by differentiating Eq. (13),

dg'oad u(l+1)
Joad — 2z __ 1/2. 22
LT [ (=) } (22)

Taking the ratio of Eqs. (22) and (16) gives the (path-
dependent) ratio of the static-to-dynamic moduli for
the loading path,

oad _ | 54| _ ()2 —v)
R - |:61303cked:| - 4 —3v) : (23)

This ratio is a stress- and strain-independent function
of the friction coefficient. As the friction coefficient is
increased to the value required for frictional lock-up
(.e., f— [, R - 1 and the static and dynamic
moduli become equivalent. It should be noted that Eq.
(23) predicts a constant static-to-dynamic moduli ratio
R™©4=0.53 for v=0.2. In practice, this ratio is com-
monly observed to be stress-dependent. For example,
Cheng and Johnston [3] reported R'°* ~ 0.4-0.9 for
Berea and Navajo sandstone subjected to sandstone
stresses from 0-210 MPa. The results of the laboratory
measurements on Berea sandstone described in the
next section also show a stress-dependent R'°*
(Fig. 5). This difference is probably a result of the per-
fect symmetries of the fcc sphere packing which pro-
duces frictional sliding at all contacts over the entire
loading path [12,24]. It appears likely that the disorder
in the grain packing structure of sandstones is respon-
sible for the observed smaller frictional lock-up at

1 T LA e e e o
0.8} ]
0.6} A

=} L[]

§ Co, © °

& 04 . ]
02F 1

0 1 |
0 5 10 15 20 25
axial strain, €, (10™)

Fig. 5. R'°* ratio of the static to dynamic uniaxial strain moduli ¢33
measured along the loading path on dry Berea sandstone.
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lower stresses and greater frictional lock-up at higher
stresses than that predicted by the simple fcc sphere
packing model; however, presently, this behavior is not
well understood.

4. Laboratory stress—strain measurements on Berea
sandstone

In this section, we will use the results of laboratory
stress—strain measurements on (dry) Berea sandstone
to provide support of several of the findings of the pre-
vious section. Namely, for uniaxial strain consolidation
in the reversible regime, we will show that: (1) the

dynamic modulus is a path-independent function of
the strain; and (2) the volumetric strain can be decom-
posed into path-independent nonlinear and path-
dependent frictional slip components.

The uniaxial strain test was performed on a cylindri-
cal sample of Berea sandstone (nominally isotropic,
porosity =0.22, density=2.1 g/cc) 5.08 cm in diameter
and 4.23 cm in length. The cylindrical surface of the
sample was first spin-casted with a thin film of Wood’s
metal, a non-wetting, low melting point lead alloy
(Cerrosafe”), then inserted into a plastic jacket
(Fig. 6(a)). The Wood’s metal coating served a dual
purpose in providing a smooth surface onto which the
radial strain gauge could be attached and to minimize

Berea sandstone core  radial strain plastic confining cell
with Wood’s metal coating gauge jacket
(D=5.08 cm, L=4.23 cm)
ultrasonic flg;g] (b)
transducer
LVDT load cell

radial strain
gauge

pressure
transducer

[ =confining
pressure

ultrasonic

transducer

Fig. 6. (a) Photograph of the Wood’s metal jacketed Berea sandstone sample (diameter =5.08 cm; length =4.23 cm), plastic jacket, and confining
cell used in the uniaxial strain tests. (b) Schematic of the experimental set-up for the uniaxial strain tests on dry Berea sandstone. Radial strain
was monitored with a strain gauge bonded to the Wood’s metal surface. Axial displacement was measured with two linear variable displacement
transducers (LVDTs), axial load with a load cell, and radial stress with a pressure transducer. P-wave velocities were measured with ultrasonic
transducers located on the ends of the sample. Uniaxial strain conditions were maintained by adjusting the confining pressure to maintain zero

radial strain.
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the intrusion of the plastic jacket into the porous sides
of the rock. The jacketed sample was inserted into a
confining vessel, and the assembly was placed in a
load frame with a load cell to measure the axial stress,
two linear variable displacement transducers (LVDTs)
to measure the axial displacement, a pressure transdu-
cer to measure the radial stress, and two ultrasonic
transducers (1 MHz) to measure the P-wave velocity
(Fig. 6(b)). All tests were performed on oven dried
samples. As the sample was subjected to increasing
axial stress, the radial strain was monitored and the
confining pressure was increased accordingly to main-
tain a condition of zero radial strain (i.e., uniaxial
strain conditions).

4.1. Path-independence of the dynamic modulus

A typical stress—strain curve from the test is dis-
played in Fig. 8. During the major loading and
unloading paths, ultrasonic P-wave velocities were
measured at regular intervals. The elastic modulus
computed from the P-wave velocities provide direct

estimates of the uniaxial strain dynamic modulus cigked

30 T T T T T T |
E (a). [] "“.:
A25:— P ‘.‘ .
Q? t [] .. ]
20F . o ]
e 7
2. 15F * .
oy L] °
[3)
10F . o o .
5' 1 1 1 1
0 5 10 15 20 25
axial stress, G,, (MPa)
30_' T T T T T
: )
25 O
= Sus®
?5 20:’ -'/./ ]
3 1sf . 3
G e ]
10F o o 3
5 1 PP B |

0 5 10 15 20 25
axial strain, €,, (10™

Fig. 7. Dynamic uniaxial strain moduli %4 computed from the P-
wave velocities measured in Berea sandstone (ci%*d = pc2, where p
is the density and ¢, is the P-wave velocity): (a) % vs ¢..; and (b)
ked s ¢... The lack of hysteresis between the loading and unload-
ing parts of &% when plotted as a function of the axial strain
suggests that the dynamic moduli are path-independent functions of

the strain.

(e, cfy*d =pc}). The plot of ciy* obtained from
the P-wave velocities for the loading and unloading
paths indicates that ¢i%*d is a path-independent func-
tion of the strain (compare Fig. 7(a) and (b)). Numeri-
cal integration of these moduli with respect to strain
[analogous to Eq. (16) for the fcc packing] along the
loading and unloading paths produces a new stress—
strain relation that describes only the nonlinear contri-
bution to the overall volumetric strain (Fig. 8; analo-
gous to Fig. 3 for the fcc packing),

6

nonlin locked

o :J cyy o de. (24)
0

Because the frictional component of the deformation
has been removed, this stress—strain curve has a higher
tangent modulus and lacks hysteresis between loading
and unloading. The same process outlined here should
yield the same stress—strain relation when applied to
any loading or unloading path provided that ¢ is a
path-independent function of the strain, as appears to
be the case for the uniaxial strain loading and unload-

ing paths.
4.2. Decomposition of the volumetric strain

An estimate of the frictional slip contribution to the
volumetric strain of Berea sandstone for the uniaxial
strain loading path can be obtained from Eq. (20),

8irziction =g — 81;?nlin. (25)
The procedure for obtaining the strain—stress relations
for &, and """ from the measured axial stress—strain
and P-wave velocity data is straightforward if it is
assumed that the initially isotropic sample will exhibit
transverse stress-induced anisotropy (TI) when sub-

jected to uniaxial strain loading along the z-axis. For

25|| ML B B B

nonlin
o 7z

20F
15F

10}

axial stress, 6,, (MPa)

0 5 10 15 20 25 30
axial strain, €, (107

Fig. 8. ¢""in vs ¢ curve for Berea sandstone under uniaxial strain
conditions obtained by fitting a curve to the %% vs ¢_. data in Fig.
7(b) and numerically integrating Eq. (28). The uniaxial strain o.. vs

¢.. curve for a load—unload cycle is shown for reference.
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uniaxial strain conditions, the strain—stress relations
for a TI material take the following simplified form,

de.. = 2513 dopaq + 533 do; (26)

derag = (s11 + 8512)d0 g + 513 do-. =0
(27)
_)darud = _<Sl3>d0—zm

s11 4+ 512
where dé;.g = dey=de),, and do,,q = do,=do,,. Sub-
stituting Eq. (27) into Eq. (26) yields the following
equation for the axial strain in terms of only the axial
stress

2s?
dsz: = (533 -

)do'zz_)dgzz = .. do.. (28)
S11+ 812

Comparison of Eq. (28) with the uniaxial strain stress—
strain relation for a TI material,

da:z = (33 dgz:o (29)

reveals that s.. = 03_31. Thus, for uniaxial strain loading
on a sample which exhibits TI stress-induced aniso-
tropy, the axial strain—stress relation can be obtained
by numerical integration of Eq. (28) with s.. = ¢33,
where ¢33 is obtained from P-wave velocities measured
at points along the loading path (c{¥** = pc7) for the
estimate of ei.‘g"““, and ¢33 is the tangent modulus ¢33 =
do.,/de.. measured along the loading path for the esti-
mate of &,.

The decomposition of the volumetric strain into its
nonlinear and frictional contributions [Eq. (25)], using
the procedure described above, is displayed graphically
in Fig. 9. The decomposition reveals that the frictional
contribution to the volumetric strain of Berea sand-
stone for uniaxial strain loading is largest at low stres-
ses (40%, Fig. 10). However, even at the higher

W

{R 30_' T T T T T
S b ]
< a5t A
N F fr_iction
o 207 €
=
5 15F ]
[75] L 4
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=
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>

"5 10 15 20 25
axial stress, 0,, (MPa)

=
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Fig. 9. Graphical decomposition of the volumetric strain ey(=¢..) of
dry Berea sandstone into contributions from frictional slip-assisted
compaction (path-dependent) &1€" and nonlinear grain contact de-
formation (path-independent) """ for the loading path 0 — A.

0.8 :
& 06f ]
I
24 04F , ]
O SN
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Fig. 10. Frictional contribution effi“t" to the total volumetric strain
&y for the loading path shown in Fig. 9.

stresses, the frictional contribution accounts for as
much as 20% of the total volumetric strain.

5. Summary and conclusions

Frictional slip along grain contacts is a well-known
mechanism for pore volume reduction and dilation in
soils. This study has demonstrated that similar pro-
cesses may occur in a medium porosity sandstone.
Using the analytic results for the stress—strain behavior
of a face-centered cubic sphere packing with Hertz—
Mindlin contact mechanics, we demonstrated that for
uniaxial strain consolidation, the dynamic modulus is
a path-independent function of the strain. We also
showed that it is possible to decompose the volumetric
strain into a path-independent contribution from non-
linear grain contact deformation and a path-dependent
contribution from frictional slip compaction. Labora-
tory stress—strain measurements on Berea sandstone
were demonstrated to be consistent with this finding
and, in addition, revealed that frictional slip compac-
tion accounts for a significant portion of the volu-
metric strain of Berea sandstone for uniaxial strain
loading.

The results of this study highlight the importance of
considering frictional effects when attempting to evalu-
ate the volumetric strain of sandstone. For the specific
conditions of this study (i.e., uniaxial strain loading,
unloading, and reloading paths), friction slip between
grains was shown to result in a path-dependent volu-
metric strain [e.g., ep(o;; path 4) # ey(o;; path B);
note that Norris and Johnson [21] and Johnson et al.
[16] demonstrate that a random sphere pack subjected
to different loading paths exhibits path-dependence
even in the absence of frictional slip). However, for
these conditions, the nonfrictional part of the volu-
metric strain can be extracted by integration of the
path-independent, dynamic moduli obtained from seis-
mic velocity measurements made at different static
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loads. Additional work is needed to determine both
the magnitude and character of the path-dependence
of the volumetric strain and the anisotropic elastic
moduli of sandstones, and to determine if the analysis
presented here can be extended to general three-dimen-
sional loading.
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Appendix. Derivation of the reloading stress—strain
relations

The procedures for obtaining the loading and
unloading uniaxial strain stress—strain relations for the
face centered cubic (fcc) packing of identical spheres
with Hertz—Mindlin contact mechanics [Egs. (13) and
(14), respectively] are described by Hendron [12] and
Stoll [24], respectively. Here, we provide the essential
steps for developing the reloading axial stress—strain
relations [Eq. (15)].

The ingredients for the derivation are the equations
describing the normal and tangential compliances, the
equation of equilibrium, the compatibility condition,
the normal contact force—displacement relation, and
the strain—force relation:

normal compliance (from Hertz theory)

C= de 1 —Vv
dN 2ua
(A1)
[3(1 - v)RN]‘/3
where ¢ = | —————— )
8u

tangential compliance for the reloading path [24] [Eq.
(19)]

do 2—v| AN dN
s 2 (o)

T AT 4ua dT
(A2)
2fN 2N ’
equation of equilibrium [24] [Eq. (9)]
dN +dT = 2R%0.., (A3)

compatibility condition [24] [Eq. (10)]

dé —do =0, (A4)

normal contact force—displacement relation [24] [Eq.

(1D)]
do = C dN, (AS)

normal strain—force relation [24] [Eq. (12)]

C
de.. = —dN, (A6)
R

where Eqgs. (A3)—(A6) are specific to an fcc packing
subjected to axisymmetric loading in the z-direction
(Fig. 1). The variables which appear in these equations
are defined as follows:

a radius of the circular area of contact between
identical spheres
coefficient of sliding friction

/
N magnitude of the normal contact force acting

between spheres with contacts oriented at 45° to
the z-axis (Fig. 1)

R sphere radius

T magnitude of the tangential contact force acting
between spheres with contacts oriented at 45° to
the z-axis (Fig. 1)

o relative approach between spheres with centers
oriented at 45° to the z-axis (Fig. 1)

o relative tangential displacement between spheres
with centers oriented at 45° to the z-axis (Fig. 1)

1 shear modulus of the sphere

v Poisson’s ratio of the sphere.

The tangential compliance for the reloading path
given in Eq. (A2) can be recast into an expression
relating the tangential and normal contact forces using
Eqgs. (Al), (A4), and (AY),

N 2—v [ aw N
dT:2(1—v)|:de+(1 _de>

: T+ _ T N**_N -1/3

X < + 2N + N ) .

After some algebraic manipulations, Eq. (A7) can be
recast into a form which can be integrated from the in-
itial point of reloading (N**, T™*) to a point on the
reloading curve (N, T'). This integration produces the

following equation which describes the tangential con-
tact force at any point on the reloading curve

(A7)

T=T"— 2f{ [(1 + K3)N**2/3 — K3N 32

(A8)

_w}
2 b
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where K3=(1—-Kf)/2Kf) with K;=Q2—-v)/[2(1-V)].
Here, T** is the tangential contact force at the point
of reloading which can be obtained from the unloading
equation developed by Stoll [24] [Eq. (17)]

™ =T"+ 2f{[(1 + K)N*23 — KyN PP
(A9)

_&ﬂﬂ}
2 b

where K,=—(1+K/)/2 K,f) and T*=fN"* is the tan-
gential contact force at the point of unloading [24]
[Eq. (13)].

The axial stress—strain relation for the reloading
curve is obtained by integrating the equation of equili-
brium (A3) from the unloaded state (0, 0) to the cur-
rent state on the reloading curve (N, T)

0. 1 N T
do., = J dN + J dT
L V2R2\ o 0

(A10)
—0,; = \/}Rz(N+ 7).
Substitution of Eq. (A9) into Eq. (A10) gives
0z = JJRZ{(l + /N + 2/[(1 + K))N**/3
— KoN** 273772 = 2f1(1 + K3)N**2/3
— KsN V3P, (ALD)

The normal contact force N can be replaced by the
axial strain ¢.. by substituting Eq. (Al) into Eq. (A6)
and integrating from zero load to the point on the
reloading curve

23/2/1R2 3
&2, Al2
T 3(1-v) bz (A12)

Substitution of Eq. (Al2) into Eq. (All) gives the
axial stress—strain relations for the reloading path [Eq
(15); segment B— C in Fig. 2)

reload __

== sty

+ 21+ Ko)el, — Kaeli]?

G :|{(1 —i—f)s%/2
(A13a)

— 2(1 + K3)ett — Kzeo]?},

for [(1 + Ky)el, — K»elX]1=0

. 2u
reload __
7= Bl)

. } A+
= 2fI(1 + K3)eZr

Al13b
- K3822]3/2}> ( )

for [(1 + Ky)el, — Krelr] < 0.
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